
1. Favourite Flavours

Introduction

Isaac’s Ice Cream wants to know which of its flavours are
the most popular.

Task

Given the listing of sales for a particular day, output the
flavour which had the most sales that day.

Example

On Tueday, Isaac’s Ice Cream sold the following:

• one chocolate ice cream,

• one grapefruit sorbet,

• one mango ice cream,

• another chocolate ice cream,

• another mango ice cream, and

• another chocolate ice cream.

So, the most popular flavour on Tuesday was chocolate
ice cream (with three sales).

Input

The first line contains a single integer D, the number of
days.

The input data for each day starts with a line containing
a single integer N , the number of ice creams sold on that
day. This is followed by N lines, each containing a flavour,
which is a single word of lowercase letters (a-z).

Sample input

2

6

chocolate

grapefruit

mango

chocolate

mango

chocolate

4

cappuccino

rainbow

rainbow

fudge

Output

For each day, output a line of the form

Case #X: F

where X is the day number, starting from 1, and F is the
most popular flavour on that day.

Sample output

Case #1: chocolate

Case #2: rainbow

Constraints

It is guaranteed that in the input used to test your pro-
gram:

• 1 ≤ D ≤ 20

• 1 ≤ N ≤ 50

• on each day, there is a unique flavour with the maxi-
mum number of sales

Standard Bank IT Challenge Finals
21 August 2013

Page 1 of 1

2. Water Bottles

Introduction

You and your friends are going on a hike, and you are
preparing your supplies for the hike. Specifically, you are
preparing the liquid refreshments. Each of your friends
has given you the exact amount of water that they need.
However, you only have a limited number of bottles.

Task

Find the maximum number of friends you can prepare
water bottles for.

You will be given a list of R requests for water, and a
list of B bottles. Each request may only be stored in a
single bottle (no amount may be split between multiple
bottles) and no two friends can share the same bottle.

It is possible that while you may have enough bottles,
not all of your friends’ requests can be carried out because
some of the bottles are too small. You must find the
maximum number of requests you can carry out with these
constraints.

Example

Suppose you have three amounts that you have to put
into bottles: 4 litres, 6 litres, and 2 litres. You have four
bottles, with capacities of 4 litres, 1 litre, 3 litres, and 5
litres, respectively.

The 4-litre request can be stored in the first 4-litre bot-
tle. The 6-litre request cannot be carried out as we do not
have a bottle big enough. Finally, the 2-litre request may
be stored into the 3-litre bottle. So, a maximum of two
requests can be carried out.

Input

The first line of input contains the integer T , the number
of test cases in the input. Each test case is described by
three lines.

The first line of each test case contains two integers R
and B. The following line contains R integers r1 to rR,
the amounts of the requests. The final line of the test case
contains B integers b1 to bB , the capacities of the bottles
that you have.

Sample input

1

3 4

4 6 2

4 1 3 5

Output

For each test case, output a line of the form

Case #X: N

where X is the test case number, starting from 1, and N
is the maximum number of requests that you can satisfy.

Sample output

Case #1: 2

Constraints

In the input used to test your program, the following con-
straints will hold:

• 1 ≤ T ≤ 20

• 1 ≤ D ≤ 10 000

• 1 ≤ B ≤ 10 000

• 1 ≤ ri, bj ≤ 100 000

Standard Bank IT Challenge Finals
21 August 2013

Page 1 of 1

3a. Transport Costs

Introduction

You have been asked to help with planning routes for the
truck drivers of a local company. Each driver has a dif-
ferent area in which he must transport goods along roads
that connect towns in the area. A truck will consume a
different amount of fuel for travelling along each road, de-
pending on the length and quality of the road. You need
to determine the minimum amount of fuel that is required
to complete each transport job.

Task

A single transport job covers an area with N towns con-
nected by R roads. Each road connects one town to a
different town and requires a certain number of litres of
petrol to travel. A road can be used to travel in either
direction between the two towns it connects and no two
roads connect the same pair of towns. Roads never meet
outside of towns: once you start travelling on a road you
can only continue to the town at the other end of the road.

Given all of this information, you must find the min-
imum amount of petrol required to travel from the first
town in the area to the last town in the area.

Example

Suppose you are given an area with 4 towns connected by
the following roads, along which a truck will consume the
given amount of petrol:

• a road from town 1 to town 2 which consumes 8 litres

• a road from town 4 to town 2 which consumes 3 litres

• a road from town 1 to town 3 which consumes 4 litres

• a road from town 3 to town 4 which consumes 6 litres

• a road from town 3 to town 2 which consumes 2 litres

This is illustrated in Figure 1. The route from town 1
to town 4 which requires the least petrol is to travel from
town 1 to town 3, then to town 2 and finally to town 4.
Note that even though it is possible to get from town 1 to
town 4 using only two roads, this route which uses three
roads requires only 9 litres of petrol, which is less than
any other route.

Input

The first line of input contains the integer T , the number
of test cases.

8

4

3

6

21

2

3

4

Figure 1

The input for each case starts with a line containing
two integers, N , the number of towns in the area, and R,
the number of roads, separated by a space. The following
R lines each describe a single road. Each line consists of
three integers separated by spaces: ai and bi, the towns
connected by the road, and pi, the number of litres of
petrol consumed for using that road.

Sample input

1

4 5

1 2 8

4 2 3

1 3 4

3 4 6

3 2 2

Output

For each test case, output a line of the form

Case #X: P

where X is the test case number, starting from 1, and P
is the minimum amount of petrol (in litres) to get from
town 1 to town N in that case.

Sample output

Case #1: 9

Constraints

In the input used to test your program, the following con-
straints will hold:

• 1 ≤ T ≤ 20

• 2 ≤ N ≤ 400

• 1 ≤ R ≤ 20 000

Standard Bank IT Challenge Finals
21 August 2013

Page 1 of 2

3a. Transport Costs

• 1 ≤ pi ≤ 100 000

• 1 ≤ ai, bi ≤ N

• No road connects a town to itself (ai 6= bi for all i)

• No two roads connect the same pair of towns

• It will always be possible to reach any town from any
other town

Standard Bank IT Challenge Finals
21 August 2013

Page 2 of 2

4. Cryptomaton

Introduction

Archeologists have discovered an ancient text-processing
machine called the Cryptomaton. The museum which
bought the machine is repairing it to working condition,
and wants to ensure that the repairs do not change the
behaviour of the machine.

Fortunately, a manuscript found with the machine has
been decoded, and was found to contain a description of
how the machine works.

Task

The Cryptomaton works by using R simple rules to ex-
pand the input message S to an enormous size. Each rule
matches all occurrences of a character and replaces them
with a specified output string. Characters that are not
matched are left as they are. The output is repeatedly
fed back into the machine in order to expand the text
even further. In total, the machine is run G times.

These expanded strings can be very large and may
require too much memory even on current computers.
Therefore, you are asked to compute only the character
at position P of the final string; this will be compared to
the output of the Cryptomaton to check that it is working
correctly.

Given S, G, P , and a set of replacement rules, compute
the P th character of the fully expanded string.

Example

Suppose the input string is ‘ABC’, G = 3 and P = 5, and
the rules are:

• A → B

• B → C

• C → CA

The outputs of the three passes are:

• BCCA

• CCACAB

• CACABCABC

So the expanded string is ‘CACABCABC’, and the fifth
character of this expanded string is ‘B’.

Input

The first line of input is a single integer T , the number of
test cases in the input.

The first line of each case contains the string S, and
the second line contains the integers P , G and R. Each of
the following R lines specify a single rule with two strings.
The first string (the left-hand side of the rule) is a single
character that should be replaced by the second string
(the right-hand side).

Each string in the input test consists of uppercase let-
ters (A-Z). Each rule has a distinct left-hand side.

Sample input

1

ABCDE

3 5 3

A B

B C

C CA

Output

For each test case, output a line of the form

Case #X: C

where X is the test case number, starting from 1, and C
is the P th letter of the expanded text.

Sample output

Case #1: B

Constraints

It is guaranteed that in the input used to test your pro-
gram:

• 1 ≤ length of S ≤ 100

• 1 ≤ P ≤ 1 000 000 000

• 1 ≤ G ≤ 30

• 0 ≤ R ≤ 26

• 1 ≤ length of right-hand side ≤ 10

Standard Bank IT Challenge Finals
21 August 2013

Page 1 of 1

5. Electoral Districting

Introduction

After years of tyrannical dictatorship, the tiny country
of Ruritania is becoming a democracy. The two political
parties (which we will call “A” and “B”) in Ruritania are
dividing the country into D electoral districts in prepara-
tion for the first elections.

Each district will hold a separate election, and the can-
didate who recieves the most votes in a district becomes
the member of parliament for that district. If the can-
didates from the two parties recieve the same number of
votes in a district, then no member of parliament will be
elected for that district.

You are part of a group of international observers mon-
itoring the entire electoral process, and your team has
been charged with ensuring the fairness of the districting
process.

The results of the elections will depend heavily on how
the country is divided into districts, so the politicians have
agreed on a method of division which they claim is fair.
You wish to prove to them that their method is not fair,
so that they will choose a better method.

Task

Representatives from each party will take turns to create
a district. One party draws a line from north to south or
from west to east across the country. The part of country
to the north or west of the line becomes a district, and the
other party repeats the process with the remaining part

of the country. This happens a total of D− 1 times, until
D districts have been created.

No district may be empty, so when creating a district, it
must contain at least one voter, and it must be possible to
divide the remaining part of the country into non-empty
districts. No district boundary may be drawn through a
voter’s location.

Each party will conduct the district-drawing process
in a manner which maximizes the difference between the
number of districts they win and the number of districts
won by the other party. They will do so optimally, and
will assume that the other side is also doing so optimally.

Due to intensive pre-election polling, it can be assumed
that everybody knows exactly who will be voting for each
party.

Show that the method is unfair by calculating how the
results are affected by which party goes first in the dis-
tricting process.

Example

Suppose there are only seven voters in Ruritania:

• supporters of party A at (3, 3), (8, 4), (5, 4) and (6, 8)

• supporters of party B at (1, 4), (6, 1) and (3, 3)

and they are to be divided into three districts.
Note that is possible for voters, even supporters of op-

posing parties, to live in harmony at the same coordinates.

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Example maps of Ruritania: possible districts if party A starts (left) and if party B starts (right).
Black dots represent party-A voters and white dots represent party-B voters.

Standard Bank IT Challenge Finals
21 August 2013

Page 1 of 2

5. Electoral Districting

If party A starts, the districting process could proceed
as follows:

1. Party A draws a north-south line at x = 5.5, creat-
ing a district to the west of that line where the two
parties get two votes each.

2. Party B can then draw an east-west line at y = 3
so that the party-A supporter at (6, 1) is in a dis-
trict alone, and the remaining two party-B supporters
form the remaining district.

In this case, the parties will win one district each with one
district tied, so the margin between them is zero.

Surprisingly, it turns out that party A would do better
by going second:

1. Party B draws a north-south line at x = 4, creating
a district which it will win two votes to one.

2. Party A can then divide the remaining part of the
country into two districts which it will win by draw-
ing a north-south line at x = 7.

Here, party A will win two districts while party B will win
only one, giving a margin of one.

In each case, there may be other lines which achieve the
same result, but in no case can either party improve its
margin by drawing a different line.

Input

The first line of input contains an integer T , the number
of the test cases.

Each test cases consists of a line containing two inte-
gers, N (the number of voters in Ruritania) and D (the
number of districts to be created). The next N lines each
contain three integers, x, y and p, where (x, y) is the co-
ordinate of a voter and p is the party they will vote for
(either A or B).

Coordinates increase from north to south and west to
east.

Note that although all voters are at integral coordinates,
district lines can be drawn at any coordinates.

Sample input

1

7 3

1 4 B

3 3 A

8 4 A

6 1 B

5 4 A

6 8 A

3 3 B

Output

For each test case, output a line of the form

Case #X: A B

where

• X is the test case number, starting from 1;

• A is the number of districts won by party A minus
the number of districts won by party B, if party A
draws the first district;

• B is the number of districts won by party A minus
the number of districts won by party B, if party B
draws the first district.

Note that A and B could be negative.

Sample output

Case #1: 0 1

Constraints

It is guaranteed that in the input used to test your pro-
gram:

• 1 ≤ T ≤ 10

• 1 ≤ D ≤ 30

• 1 ≤ N ≤ 10 000

• 1 ≤ x, y ≤ 20

• It is possible to divide Ruritania into D non-empty
districts

Standard Bank IT Challenge Finals
21 August 2013

Page 2 of 2

6. Yavalath on a Rhombus

Introduction

Most games are invented by humans to be played by hu-
mans; some games are invented by humans to be played
by computers. But recently, a few games are invented
by computers: Cameron Browne’s program Ludi tested
out many different rule combinations, and evaluated how
interesting the resulting games were. One of the games
it invented was Yavalath, which is now published (to be
played by humans) by nestorgames.

For the IT Challenge, we will slightly modify the board
on which it is played, to make it easier for computers to
play.

Task

The problem is an interactive task. You must write a
program to play Yavalath against other programs.

Figure 1: A Yavalath board.

Yavalath is a two-player game. Our version is played on
an N×N rhombus∗ consisting of hexagonal tiles, as shown
in Figure 1. Each hexagon is has a unique coordinate (R,
C), designating the row and column respectively. The
top-left tile is designated (1, 1), the top-right tile is (1,
N), the bottom-left tile is (N , 1) and the bottom-right
tile is (N , N).

The players take turns placing coloured tiles. The first
player to place four (or more) pieces in a row wins. How-
ever, if a player makes a line of three pieces in a row with-
out making a chain of four in a row at the same time, that
player loses. If the board is filled without either player
making a winning or losing move, the game ends in a tie.

Neighbouring Tiles

Given a tile at position (R, C) the following are its neigh-
bours if they exist:

• West: (R, C − 1)

• East: (R, C + 1)

∗The original Yavalath is played on a hexagon.

Figure 2: The blue player cannot prevent red from making
four in a row without making three in a row herself.

• North-West: (R− 1, C)

• North-East: (R− 1, C + 1)

• South-West: (R + 1, C − 1)

• South-East: (R + 1, C)

Yavalath Tools

In the yavalath tools directory on your USB drive are
solution templates and a program for running games.

Templates

You will find a template program (in each language) on
your USB drive, in the templates subdirectory of the
yavalath_tools directory. This template includes all the
code needed to communicate with the other player; you
need only write code to decide which move you should
make next.

You must complete the move method of the
YavalathPlayer class. This method is called every turn
with the position of your opponent’s last move. The ex-
ception to this is at the start of the game where it is called
with the position (−1,−1). It must return the position of
your next move. If you return an invalid move your pro-
gram will be terminated.

You may also add initialisation code to the construc-
tor, which is called at the beginning of each game with
the current game’s dimensions. You may add any other
methods you need. Language-specific documentation for
the template programs can be found on your USB drive
at yavalath_tools/templates/docs/index.html.

Running games

The program called RunYavalath is a program for running
games. The program can be run with either a graphical
or command-line interface.

Standard Bank IT Challenge Finals
21 August 2013

Page 1 of 2

6. Yavalath on a Rhombus

The graphical interface can be run by double-clicking
on the RunYavalath file and then selecting Run or Run in

Terminal (the latter will allow you to see any debugging
output your program produces). The GUI gives several
options for each player:

• Human – this player will be controlled by the user

• Random – this player will play randomly

• Random with fixed seed – this player will play ran-
domly, but if the same seed number is used multiple
times, the same moves will be played, if possible (this
may be useful for debugging)

• Program – your program will play as this player (for
Java, select the .class file; for C++, select the exe-
cutable file; for Python, select the source file)

The following are hints for locations assuming that
you used an Eclipse project, but you may need to
adapt them to your project name and setup:

Java: ~/workspace/<project>/bin/Yavalath.class

Python 2.x: ~/workspace/<project>/src/yavalath.py

Python 3.x: ~/workspace/<project>/src/yavalath.py3

C++: ~/workspace/<project>/Debug/yavalath

Note that for Java and C++ programs, you might need
to click Build in Eclipse to get the latest version of the
file. For Python programs, it is essential that you use
the correct extension: .py for Python 2.x, and .py3 for
Python 3.x. Using the wrong extension may result in fail-
ures both in RunYavalath and the submission system.

Below the players’ area you can specify the size of the
board and whether or not to visualise (display) the game
on-screen. Once the game is set up, you can click Play to
start it.

If Human is selected for either player, the game will be
visualised regardless of the Visualise setting, to allow
the user to play. If Human is selected for both players, two
windows will be shown: one for each player. The visualisa-
tion adds a delay of about half a second per move; to time
your program more accurately, disable the visualisation.

Constraints

When evaluating your submission:

• N = 9

Timing

Your program is allowed a total of 5 seconds of processing
time during each game. Time taken by your opponent or
the referee does not count against your program.

Scoring

There are two available points for this problem, as well as
two possible time bonuses. The first point will be awarded
to any program which consistently beats a random player.
The remaining point and time bonuses will be awarded in
a tournament.

When you submit a solution, it will play four games
against a random player – two as the first and two as the
second player. Your solution will be judged correct if it
wins all the games.

A result of “wrong answer” means that your program
lost at least one of the games. A result of “abnormal ter-
mination” means that your program exited (or crashed)
before the game was over (unlike in non-interactive prob-
lems, exiting with an exit code of 0 before the end of the
game is considered abnormal).

Once you have submitted a correct solution, you may
continue to submit solutions, which will not change your
score or total time. At the end of the contest, we will take
the teams’ last correct submissions and place them in a
tournament to determine which solution is the best. The
submissions will be ranked in terms of number of wins to
give an overall score for the submission.

The top three teams in this tournament will receive
bonuses: the first team will receive an extra point, the
second team will receive a deduction of 120 minutes from
their total elapsed time, and the third team will receive a
deduction of 60 minutes from their total elapsed time.

If your program does not interact with the server validly
for a given game, then you will automatically lose the
game. A team must interact validly in at least one game
to be eligible for a bonus. In the event of a tie, all teams
tied for a position will receive the corresponding bonus.

Live tournament

During the contest, the judges will run games with ac-
cepted solutions from all teams, and show these games on
a screen in the judging room. The results of these games
will not be used in scoring. These games may not update
immediately when a new submission is accepted.

The live games will not be run during the final hour of
the competition.

Standard Bank IT Challenge Finals
21 August 2013

Page 2 of 2

The Standard Bank IT Challenge 2013

 Competition rules

Rules for the Standard Bank IT Challenge 2013 are as follows.

The competition is sponsored by Standard Bank.

The Competition Chief Judge is solely responsible for ruling on any
unforeseen situations and all such decisions are final.

1. Competition eligibility

1.1. To be eligible for the competition, students must

 currently attend a university in South Africa,

 be South African citizens or permanent residents,

 be full-time undergraduates in any discipline, or

 be full-time or part-time honours students in any discipline.

1.2 Up to four people can be entered for each team, all of whom may attend

the heat or the final. In all teams one member must be named as Team

Manager. All four members may take part in programming tasks. Each
team must include at least one member of the opposite sex and at least
one team member must be African, Asian, Indian or Coloured.

1.3 A team may not have more than two members of a team that came first,

second or third in the finals of the competition in 2012.

1.4 For teams that successfully reach the finals, a maximum of two team

members may be replaced by substitutes following the heats, as long as
the conditions set out in (1.1), (1.2) and (1.3) are met.

1.5 Teams from Standard Bank may also participate but are not eligible for

any of the prizes.

2. Conduct of the competition at the HEATS

2.1 The heats will be held on Saturday 20 April 2013 at the team’s home
university or nearby facility. The heats will last for 4 hours starting at
10:00 a.m.

2.2 Each team should be given access to one PC and one printer. The

following programming languages may be used (participants can use
any one or any combination of these)

 a) Java 2 Standard Edition
 b) C++
 c) Python 2.7.3

d) Python 3.2.3

Solutions will be compiled and/or executed using Sun Java SE 1.6, GCC
4.4 and Python 2.7.3 and 3.2.3. If these versions or tools are changed,
competitors will be notified before the start of the competition.

2.3 Only solution source files submitted via the contest submission system

can be accepted or considered.

2.4 The Competition Managers cannot accept responsibility for any solutions

that are not received during the heats, whether due to transmission
delays or otherwise. Proof of transmission is not proof of receipt.

2.5 Up to five problems may be posed. There may be problems to which

access will only be given once another problem has been solved.

2.6 As far as practicable, the problems will avoid dependence on detailed

knowledge of a particular application area. The problems will not
necessarily be of equal difficulty.

2.7 Competitors may bring into the contest and consult any source materials

intended for human use such as for example:

 printed (hard copy) books and manuals

 printed (hard copy) program listings

 non-programmable calculators

Competitors may not load any material on the contest computers
beforehand.
Competitors may not have access to the internet during the contest.
Competitors may not bring the following into the contest area, nor may
they remove it from the contest area if issued there:

 computers, programmable calculators, personal digital assistants,
personal music devices and similar

 mobile phones, tablets and similar

 machine readable media such as memory pens, CDs, etc

 computer peripherals

All source material must be declared. In the event of any uncertainty as
to admissibility, the Chief Judge’s decision is final. Infringement of the
rule may lead to disqualification.

2.8 Any team which believes that a question is ambiguous or unclear may

request clarification from the judges using the competition software. The
judge’s responses can subsequently be viewed using the competition
software.

2.9 The competition rules may require problem solutions to conform to a

specified interface or to produce output in a particular format. They will
then be tested in a judged run against hidden test data compiled by the
judges. By default, such a judged run is deemed successful by the
judges if it processes the hidden test data correctly within the time and
memory constraints that will be specified in the contest materials.

2.10 The scores of the other teams will be available on an electronic

scoreboard. This scoreboard will not be updated during the last hour of
the competition.

2.11 Problem solutions must not attempt to spawn new processes or threads,

open files or sockets or otherwise attempt to interfere with the evaluation
process. Teams submitting such solutions may be disqualified.

2.12 Teams will randomly be assigned to particular rooms, computing

facilities, etc. While the judges will endeavour to minimise the effect of
hardware failures, no responsibility can be accepted if they occur. Under
no circumstances shall teams attempt to alter or interfere with the
computing facilities provided without the prior permission of one of the
competition judges.

2.13 Only the top-scoring team at each university is eligible to attend the final,

and teams that do not correctly solve any of the questions are not
eligible. The top nine eligible teams will be invited to the final. If there are
fewer than nine eligible teams, the competition organisers may invite
addition teams based on performance. This decision is entirely at the
discretion of the competition organisers and no debate will be entered
into in this regard

2.14 The decisions of the Competition Chief Judge are final and no

correspondence will be entered into.

3. Conduct of the competition at the FINALS

3.1 The competition will be held on Wednesday 21 August 2013 in Gauteng.

3.2 No smoking will be allowed during the entire period of the competition.

Contestants are allowed to apply nicotine patches or chew nicotine gum
at their own risk.

3.3 Each team will be given access to one PC and access to a printer. The

following programming languages may be used (participants may use
any one or any combination of these)

 a) Java 2 Standard Edition
 b) C++
 c) Python 2.7

d) Python 3.3

 Solutions will be compiled and/or executed using Sun Java SE 1.6, GCC
4.4 and Python 2.7 and 3.3. If those versions or tools are changed,
competitors will be notified before the start of the competition.

3.4 Teams will randomly be assigned to particular rooms, computing facilities,

etc. While the judges will endeavour to minimise the effect of hardware
failures, no responsibility can be accepted if they occur. Under no
circumstances shall teams attempt to alter or interfere with the
computing facilities provided without the prior permission of one of the
competition judges

3.5 Up to seven problems may be posed. There may be problems to which

access will only be given once another problem has been solved. As far
as practicable, the problems will avoid dependence on detailed
knowledge of a particular application area. The problems will not
necessarily be of equal difficulty.

3.6 Competitors may bring into the contest and consult any source materials

intended for human use such as for example

 printed (hard copy books and manuals

 printed (hard copy) program listings

 non-programmable calculators

Competitors may not load any material on the contest computers
beforehand.
Competitors may not have access to the internet during the contest.
Competitors may not bring the following into the contest area, nor may
they remove it from the contest area if issued there

 computers, programmable calculators, personal digital assistants,
personal music devices and similar

 mobile phones, tablets and similar

 machine readable media such as memory pens, CDs, etc

 computer peripherals

All source material must be declared. In the event of any uncertainty as
to admissibility, the Chief Judge’s decision is final. Infringement of the
rule may lead to disqualification or a time penalty at the discretion of the
judges.

3.7 All problem solutions submitted for judging must be expressed in Java 2

Standard Edition, Python or C++ the designated languages of the
competition, using the designated hardware with the designated
operating system, compiler, interpreter and other software.

3.8 Teams may not accept help or advice on competition problems or rules

from anyone except competition judges who are authorised to give such
advice. The judges will also clarify problem ambiguities and may advise
on system-related queries, explain error messages, etc.

3.9 The judges will not invite questions about problems. A team may submit

a written assertion of ambiguity or error in a problem statement using
procedures defined by the judges. If the judges agree that there is an
ambiguity or error in the problem statement then they will issue a
clarification to all teams.

3.10 The competition rules may require problem solutions to conform to a

specified interface or to produce output in a particular format. They will
then be tested in a judged run against hidden test data compiled by the
judges. By default, such a judged run is deemed successful by the
judges if it processes the hidden test data correctly within the time and
memory constraints that will be specified in the contest materials.

3.11 Problem solutions must not attempt to spawn new processes or threads,

open files or sockets, or otherwise attempt to interfere with the evaluation
process. Teams submitting such solutions may be disqualified.

3.12 The solutions to some questions may be judged in “interactive mode”.

To be deemed correct, such solutions must conform to the specified
interface and/or output format without causing exceptions or exceeding
the time or memory constraints specified in the contest materials. Once
a team has submitted a correct solution to an interactive question, they
may submit further solutions to the same question without penalty. If
more than one team submits a correct solution to such a question, the
correct solutions will be ranked in a manner specified by the question. In
general, this ranking will reflect the efficiency and/or fitness for purpose
of the solutions. If a team has submitted more than one correct solution
to the question, the last submitted solution will be used for the final
ranking. At the discretion of the Chief Judge, the current ranking of
solutions to an interactive question may be communicated to the
competitors during the competition – otherwise, the judges’ response to
the submission of a solution to an interactive question will be in the same
format as a response to a solution to any other question.

3.13 If a judged run is not deemed successful, then a statement to that effect
will be returned by the judges. Any compiler error messages (e.g.
identifying the place where an error was detected) will also be returned if
they do not compromise the integrity of the judges’ hidden test data. An
unsuccessful judged run will be labelled with a phrase to indicate the
reason for rejection, including for instance: syntax error, full-time error,
time limit exceeded or incorrect output.

 The judges will not intentionally attempt to mislead competitors about the

nature of their errors; neither will they guarantee to identify the true error
in the program. Normally, the first symptom of error will be noted and
described by the most appropriate phrase.

3.14 Although the length of the competition is expected to be six hours, the

judges have the authority to shorten or extend the competition in the
event of unforeseen difficulties. If the duration of the competition is
altered, every attempt will be made to notify competitors as soon as
possible and to assure uniform impact on all teams.

3.15 Competitors will be informed of the results on the day of the competition.

Again, the decision of the Competition Chief Judge is final.

4. Scoring of the competition in general

4.1 Sample data and sample output will be given with each question. This is

provided to assist in clarifying the format required for input and output by
the question, and should therefore be read as part of the question. It
should be clearly understood that the only thing implied by the sample
data is that a correct program, given the sample data, should produce
the sample output. In particular it does not imply that the Judges will use
that data to test the program, or that the sample data will necessarily
check for any or all special cases that the question may require.
Competitors can assume that the Judges’ data will be in the correct
format unless the question explicitly asks competitors to check the
format.

4.2 The judges will be solely responsible for determining the correctness of

submitted problem solutions and deciding the winners of the competition.
They are empowered to adjust for and adjudicate on any unforeseen
events and conditions. The decisions of the Chief Judge are final.

5. Scoring of the competition at the HEATS

5.1 The positions are based in the first instance on the number of successful

judged runs. In the case of equal numbers of successful judged runs
then the order is determined by the least amount of total elapsed time for
all the successful runs.

5.2 A time penalty of twenty minutes will be added for every unsuccessful

judged run on problems that are eventually completed successfully, with
the exception of compilation errors for which there is no penalty.

6. Scoring of the competition at the FINALS

6.1 The positions are based in the first instance on the number of successful

judged runs. In the case of equal numbers of successful judged runs
then the order is determined by the least amount of total elapsed time for
all the successful runs.

6.2 A time penalty of twenty minutes will be added for every unsuccessful

judged run with the exception of compilation errors for which there is no
penalty. Once a team has submitted a successful solution to an
interactive question, subsequent unsuccessful submissions to the same
question will not attract this penalty.

6.3 Each team which makes at least one successful submission to an

interactive question is credited with a successful judged run for that
question. At the discretion of the Chief Judge, these solutions may
attract a score bonus. Typically, the highest-ranking solution will be
credited with an additional successful judged run (i.e. will be given
double weight in the final scoring of the competition). If there is a
second-ranking solution, it will instead be credited with 120 minutes (i.e.
120 minutes will be deducted from the team’s total elapsed time for
scoring purposes) and the third ranked solution (if any) will be credited
with 60 minutes. Any variation of this scoring for a particular interactive
question will be communicated to the teams before the start of the
competition.

6.4 Among teams solving the same number of problems during the

competition, the number of minutes elapsed, including any time
penalties, until each successful solution, will be totalled and these teams
will be placed in order by the rule that the shorter the time taken, after
any bonuses are taken into account, the higher the position.

6.5 The Judges reserve the right to add additional problems during the

progress of the final. Should this occur, the scoring of such problems will
be declared at the time.

6.6 If rules 6.1 to 6.4 still produce a tie, the tie will be broken by considering

the time of the last correct submission from each team (teams with an
earlier time rank higher than those with a later time). Only a team’s first
correct submission on any problem is considered in this rule (i.e. teams
are not penalised for making further correct submissions on an
interactive task). If a tie still remains, this rule will be repeated on
successively earlier correct solutions until the tie is resolved.

7. Prizes

Prizes will be presented by the sponsor Standard Bank, to the university
which comes in 1st, 2nd and 3rd place.

 First R170,000 to the university, the team represents
 Second R 20,000 to the university, the team represents
 Third R 10,000 to the university, the team represents

Prizes will be presented by the sponsor Dell, to the members of the team
which comes in 1st and 2nd place.
Prizes will be presented by the sponsor DG Store, to the members of the
team which comes in 3rd place.

8. General

8.1 The Competition Managers reserve the right to cancel the competition at

any time, should it deem such action to be necessary.

8.2 The competition is not open to any person directly or indirectly involved

in the management of this competition.

8.3 All entrants will be deemed to have accepted these rules and to agree to

be bound by them when entering this competition.

8.4 The Competition Managers shall not pass on the personal details of any

competitors to any third party without express consent except for the
purposes of running the competition.

1

IT Challenge Finals contest manual
1. Introduction

For the finals of the IT Challenge, your submissions will be marked by Abacus, an automated judging
system. However, you will not interact with Abacus directly. Instead, you will submit solutions on
USB drives and the judges will load the solutions into Abacus.

2. Clarifications
If you are uncertain about some details in a task or the contest in general, you may submit a clarification
request on the provided clarification request form. The team manager must take this form to the judges'
room. Verbal requests for clarification about the tasks will not be accepted. Queries not related to the
tasks (e.g., related to equipment problems) may be made verbally.

3. Writing your solution
If you are using Java, you can call your main class whatever you like, but it must be the first class in the
file, and it must be public. You can include support classes after it, but they should not be public.
Because the Java compiler requires source files to be named according to the package and class name,
the marker has to extract these from the source file. To avoid the possibility of a compilation error,
it is safest not to use the words public, class or package in comments before the declaration
of the main class.

If you are using Python, you have a choice of Python 2.x or Python 3.x. Python 3.x is not backwards-
compatible with Python 2.x. Therefore you must use the .py3 extension for Python 3.x code and .py
for Python 2.x code.

Your solution will read from standard input (stdin, cin, System.in or sys.stdin depending
on language) and write to standard output (stdout, cout, System.out or sys.stdout). Your
solution is tested by an automated marker, so you must be careful to input only what is asked for, and
output only what is asked for. In particular, do not print prompts or messages like “The answer
is:” unless you are asked to.

These instructions apply only to non-interactive questions. Interactive questions will contain separate
instructions for class naming and I/O.

3.1. Floating-point output
In some questions, you may be asked to give output that is correct to a particular number of decimal
places. It is recommended that you use the following code fragments to produce correct output for
such questions (in all the cases below, we assume that the number of decimal places asked for is 3,
and that the variable x is the value to be output):

• Python 2.x

print "Case #%d: %.3f" % (caseNum, x)

• Python 3.x

print("Case #{}: {:.3f}".format(caseNum, x))

• Java

System.out.println(String.format(
 "Case #%d: %.3f", caseNum, x));

IT Challenge Finals contest manual

2

• C++ with stdio

printf("Case #%d: %.3f\n", caseNum, x);

• C++ with iostreams

cout.precision(3);
cout << "Case #" << caseNum << ": "
 << fixed << x << endl;

4. Submitting
You will be provided with two USB drives. The drives are identical: you have two so that you can
work with one while the judges have the other. Each drive will contain folders called submit and
marked, each with a sub-folder per problem.

When you wish to make a submission, place a solution file in the per-problem sub-folder of submit
(for example, if you have a solution called prob3.cpp, then copy it to submit/3/prob3.cpp).
You must provide exactly one source file, since Abacus does not accept multi-file solutions, or multiple
simultaneous submissions. Your solution must have the extension .cpp, .java, .py or .py3, as
appropriate to the language it is written in. Please remember to safely eject the drive before unplugging
it, as otherwise your solution may be missing or corrupted (if you are not sure how to do this, please
ask for assistance).

You will also be given paper submission forms: use one per problem. Once you have placed your
submission on the USB drive, the team manager must take the drive and the submission form for the
problem to the judges' room. The judges will mark the solution, indicating the result of the submission
on the submission form. They will move the solution to the marked folder on the drive before
returning it.

The possible results of a submission are:

Compilation failure Your submission did not compile. The judges' machines
use the same compiler versions as the contestants', so this
probably indicates that you did not correctly test that your
solution compiles. The judges' can provide more details on
the compilation error on request. There is no time penalty for
compilation failures. Note that since Python is an interpreted
language, there are no compilation errors — so be particularly
careful before submitting, as what would be a compilation error
in another language will be a run-time error in Python and will
cost you penalty time.

Time limit exceeded Your program exceeded the maximum time limit. This could
mean that it is too slow or has an infinite loop.

Abnormal termination Your program has crashed for some reason. Possible reasons
include using too much memory, writing an excessive amount
of output, throwing an uncaught exception, using illegal
memory in C++, and returning a non-zero exit code (in
particular, your main function in C++ must return 0).

Format error Your program ran successfully, but did not conform to the
specified output format. It might or might not have the right
answers.

Wrong answer Your program ran successfully, and at a glance produces the
correct formatting, but the answers are wrong.

Correct answer Well done!

IT Challenge Finals contest manual

3

If you wish to ask a question about a particular submission, you should submit a clarification request
form and include the submission ID in your request.

5. Compiler versions
All submissions are evaluated on systems running Ubuntu 12.04, with the following compiler versions:

• GCC 4.6.3

• OpenJDK 6 (1.6.0)

• Python 2.7.3

• Python 3.2.3

6. Resource limits
Your program is subject to a number of limits on its resources:

Time 5 seconds. If you exceed this, you will get a response of “time limit
exceeded.”

Memory 64MiB. If you exceed this, memory allocation functions will fail,
usually leading to an abnormal termination.

Output 16MiB. If you exceed this, you will get an abnormal termination.
Note that this is far larger than any correct output file, and is in
place purely to protect the system from a program that outputs data
in an infinite loop.

Standard Bank IT Challenge 2013

Submission Record
Team: Problem:

ID Time Result Judge

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Standard Bank IT Challenge 2013

Submission Record
Team: Problem:

ID Time Result Judge

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Standard Bank IT Challenge 2013

Submission Record
Team: Problem:

ID Time Result Judge

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Standard Bank IT Challenge 2013

Submission Record
Team: Problem:

ID Time Result Judge

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Standard Bank IT Challenge 2013

Submission Record
Team: Problem:

ID Time Result Judge

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Standard Bank IT Challenge 2013

Submission Record
Team: Problem:

ID Time Result Judge

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Standard Bank IT Challenge 2013

Submission Record
Team: Problem:

ID Time Result Judge

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Standard Bank IT Challenge 2013

Clarification Request
Team: Problem:

Query:

Response:

 General announcement☐

Signed off by: ____________________ at ________

Standard Bank IT Challenge 2013

Clarification Request
Team: Problem:

Query:

Response:

 General announcement☐

Signed off by: ____________________ at ________

